可控硅在電路中的主要作用
普通可控硅最基本的用途就是可控整流。大家熟悉的二極管整流電路屬于不可控整流電路。如果把二極管換成可控硅,就可以構成可控整流電路。現在我畫一個最簡單的單相半波可控整流電路〔圖4(a)〕。在正弦交流電壓U2的正半周期間,如果VS的控制極沒有輸入觸發脈沖Ug,VS仍然不能導通,只有在U2處于正半周,在控制極外加觸發脈沖Ug時,可控硅被觸發導通。現在,畫出它的波形圖〔圖4(c)及(d)〕,可以看到,只有在觸發脈沖Ug到來時,負載RL上才有電壓UL輸出(波形圖上陰影部分)。Ug到來得早,可控硅導通的時間就早;Ug到來得晚,可控硅導通的時間就晚。通過改變控制極上觸發脈沖Ug到來的時間,就可以調節負載上輸出電壓的平均值UL(陰影部分的面積大小)。在電工技術中,常把交流電的半個周期定為180°,稱為電角度。這樣,在U2的每個正半周,從零值開始到觸發脈沖到來瞬間所經歷的電角度稱為控制角α;在每個正半周內可控硅導通的電角度叫導通角θ。很明顯,α和θ都是用來表示可控硅在承受正向電壓的半個周期的導通或阻斷范圍的。通過改變控制角α或導通角θ,改變負載上脈沖直流電壓的平均值UL,實現了可控整流。
4、 在橋式整流電路中,把二極管都換成可控硅是不是就成了可控整流電路了呢?
在橋式整流電路中,只需要把兩個二極管換成可控硅就能構成全波可控整流電路了。現在畫出電路圖和波形圖(圖5),就能看明白了
振蕩器的電容器C被電源充電,UC按指數規律上升到峰點電壓UP時,單結晶體管VT導通,在VS導通期間,負載RL上有交流電壓和電流,與此同時,導通的VS兩端電壓降很小,迫使張弛振蕩器停止工作。當交流電壓過零瞬間,可控硅VS被迫關斷,張弛振蕩器得電,又開始給電容器C充電,重復以上過程。這樣,每次交流電壓過零后,張弛振蕩器發出第一個觸發脈沖的時刻都相同,這個時刻取決于RP的阻值和C的電容量。調節RP的阻值,就可以改變電容器C的充電時間,也就改變了第一個Ug發出的時刻,相應地改變了可控硅的控制角,使負載RL上輸出電壓的平均值發生變化,達到調壓的目的。
雙向可控硅的T1和T2不能互換。否則會損壞管子和相關的控制電路。
5、可控硅控制極所需的觸發脈沖是怎么產生的呢?
可控硅觸發電路的形式很多,常用的有阻容移相橋觸發電路、單結晶體管觸發電路、晶體三極管觸發電路、利用小可控硅觸發大可控硅的觸發電路,等等。
6、什么是單結晶體管?它有什么特殊性能呢?
單結晶體管又叫雙基極二極管,是由一個PN結和三個電極構成的半導體器件(圖6)。我們先畫出它的結構示意圖〔圖7(a)〕。在一塊N型硅片兩端,制作兩個電極,分別叫做第一基極B1和第二基極B2;硅片的另一側靠近B2處制作了一個PN結,相當于一只二極管,在P區引出的電極叫發射極E。為了分析方便,可以把B1、B2之間的N型區域等效為一個純電阻RBB,稱為基區電阻,并可看作是兩個電阻RB2、RB1的串聯〔圖7(b)〕。值得注意的是RB1的阻值會隨發射極電流IE的變化而改變,具有可變電阻的特性。如果在兩個基極B2、B1之間加上一個直流電壓UBB,則A點的電壓UA為:若發射極電壓UE
7、怎樣利用單結晶體管組成可控硅觸發電路呢?
我們單獨畫出單結晶體管張弛振蕩器的電路(圖8)。它是由單結晶體管和RC充放電電路組成的。合上電源開關S后,電源UBB經電位器RP向電容器C充電,電容器上的電壓UC按指數規律上升。當UC上升到單結晶體管的峰點電壓UP時,單結晶體管突然導通,基區電阻RB1急劇減小,電容器C通過PN結向電阻R1迅速放電,使R1兩端電壓Ug發生一個正跳變,形成陡峭的脈沖前沿〔圖8(b)〕。隨著電容器C的放電,UE按指數規律下降,直到低于谷點電壓UV時單結晶體管截止。這樣,在R1兩端輸出的是尖頂觸發脈沖。此時,電源UBB又開始給電容器C充電,進入第二個充放電過程。這樣周而復始,電路中進行著周期性的振蕩。調節RP可以改變振蕩周期
8、在可控整流電路的波形圖中,發現可控硅承受正向電壓的每半個周期內,發出第一個觸發脈沖的時刻都相同,也就是控制角α和導通角θ都相等,那么,單結晶體管張弛振蕩器怎樣才能與交流電源準確地配合以實現有效的控制呢?
為了實現整流電路輸出電壓“可控”,必須使可控硅承受正向電壓的每半個周期內,觸發電路發出第一個觸發脈沖的時刻都相同,這種相互配合的工作方式,稱為觸發脈沖與電源同步。 怎樣才能做到同步呢?大家再看調壓器的電路圖(圖1)。請注意,在這里單結晶體管張弛振蕩器的電源是取自橋式整流電路輸出的全波脈沖直流電壓。在可控硅沒有導通時,張弛
